Plate Tectonics

Looking at the world map, what do you notice about the shape of the continents?

Jot down your ideas on your paper...

The thing is...the world didn't always look like this! It used to look like this:

Pangaea Supercontinent – 200 million years ago

How is this possible?!?!?

Plate Tectonics Theory

The lithosphere is divided into a number of large and small plates and the plates are floating on the mantle

Lithosphere = the Earth's <u>crust</u> plus the upper portion of the <u>mantle</u> layer

Plate motion based on The Global Positioning System (GPS)

G221.001

Plate Boundaries

Divergent boundary: o Plates are moving <u>away</u> from each other o Midocean ridges are created and new ocean floor plates are created

Plate Boundaries

Divergent boundary:

Leif the Lucky Bridge Bridge between continents in Reykjanes peninsula, southwest Iceland across the Alfagja rift valley, the boundary of the Eurasian and North American continental tectonic plates.

Convergent Boundary: plates are moving <u>toward</u> each other and are colliding (3 types)

When Ocean Plates collide with Continental Plates

- <u>Create subduction zones</u>, trenches
- Create near coast volcanoes
- Benioff shear zones (a pattern of earthquakes as an ocean plate grinds down the underneath side of a continent)

Benioff Shear Zones

Oceanic-continental convergence

When ocean plates collide with other ocean plates

Island arcs are created

(a pattern of volcanic islands created from a subduction zone that is located off the coast)

When a continental plate collides with another continental plate

<u>Mountain ranges</u> are created

 (*example*: Himalayan Mountains)

Continental crust

Lithosphere

Asthenosphere

Continental crust

Lithosphere

ateau

Ancient oceanic crust

Continental continental sonvergence

Himalayan Mountains

Transform Fault Boundary

 Plates are neither moving toward nor away from each other, they are moving <u>past</u> <u>one another</u>.

Transform Fault Boundary

The plates may move in <u>opposite</u> directions or in the <u>same</u> directions but at different rates and frequent <u>earthquakes</u> are created (example: San Andreas Fault)

San Andreas Fault

So is the Earth getting bigger?

- o No
- o Plates are destroyed as fast as they are created (2 ways)
- Plates may be subducted and <u>melted</u>
 or may push be pushed upward to
 form <u>mountains</u>

Boundaries Between Tectonic Plates—1:23

How can Oreos model the plate boundaries? PRACTICE AT HOME

- ✓ Very carefully, take just the top cookie off the Oreo.
- ✓ Break the top cookie into 2 equal halves.
 ✓ Replace the cookie halves back on the Oreo
 <u>Using the cookie</u>,
- Demonstrate a transform fault boundary
 Demonstrate a divergent plate boundary
 Demonstrate a convergent plate boundary

Seafloor Spreading Theory:

Ocean floors are moving like broad <u>conveyor belts</u>

 New ocean floor crust is being created at the <u>midocean ridges</u>

What causes this?

Convection currents within the mantle

 The up-welling leg of the current creates a <u>divergent</u> boundary which produces <u>midocean ridges</u>

Convection Current Demo

 The down-welling leg of the current creates one type of <u>convergent</u> boundary that results in <u>trenches</u> and a <u>subduction</u> zone

What evidence do we have to support this idea?

- o Midocean ridges are <u>warmer</u> than surrounding ocean floors
- o <u>Active volcanoes</u> on ridges, earthquakes on ridges
- o Midocean ridge rocks are <u>younger</u> than surrounding ocean floor rocks
- o Midocean ridge volcanoes are <u>younger</u> than volcanoes further away

Polar Reversal Magnetism

N S NAGNETIC

Magnetic Poles

Magnetic Field Reversals—2:54

Speed of Spreading

Atlantic Ocean -2-3 cm/year

South Pacific
 Ocean - <u>15-18</u>
 cm/year

Seafloor Spreading

The <u>Seafloor is Spreading</u> Clip—4:01

How Earth's Structure Affects Plate Tectonics—5:43 <u>http://videos.howstuffworks.com/science-</u> <u>channel/29268-100-greatest-discoveries-sea-</u> <u>floor-spreading-video.htm</u>

http://videos.howstuffworks.com/sciencechannel/29268-100-greatest-discoveries-sea-floorspreading-video.htm

Continental Drift Theory The continents have shifted their position over geologic time

225 million years ago

65 million years ago

B 135 million years ago

D Present

120°

 At one time all land masses were <u>connected</u> into one piece called <u>Pangaea</u>

<u>Continental Drift Theory 3–2:21</u>

The First Continents 4:57

225 million years ago

TRIAZSIC 200 million yaara ago

JURASSIC 135 million years ago GRETAGEOUS 35 million years ago

http://videos.howstuffworks.com/sciencechannel/29267-100-greatest-discoveriescontinental-drift-video.htm

PRESENTEDAY

Continents

o The continents are like packages on the seafloor conveyor belt

SUPER CONTINENTS 80 MILLION YEARS AGO

High percentage <u>fit</u> of continents at the 500 fathom level

Minerals, 0 fossils, and mountains on now different continents match if the continents were together

<u>he Mystery of Brachiosaurus (~3 mm</u>

Glaciation patterns indicate a <u>common</u>
 ice cap at the South Pole

 <u>Paleomagnetism</u> (magnetism of old rocks) indicate a common pole if the continents were all connected

Plate Tectonics 2 –4:22

<u>Plate Tectonics by Brainpop</u>

http://www.brainpop.com/science/e arthsystem/platetectonics/

http://www.brainpop.com/science/earthsyst em/platetectonics/